Fresh water ecosystems- The salt content of fresh bodies is very low, always less than 5 ppt (parts per thousand). E.g lakes, ponds, pools, springs, streams, and rivers
Marine ecosystems – the water bodies containing salt concentration equal to or above that of sea water (i.e., 35 ppt or above). E.g shallow seas and open ocean Brackish water ecosystems- these water bodies have salt content in between 5 to 35 ppt. e.g. estuaries, salt marshes, mangrove swamps and forests.
AQUATIC ORGANISMS
The aquatic organisms are classified on the basis Of their one of occurrence and their ability to cross these zones. can be classified on the basis of their life form or location into five groups
- Neuston:
These are unattached organisms which live at the air-water interface such as floating plants, etc.
Some organisms spend most of their lives on top of the air-water interface such as water striders, while others spend most of their time just beneath the air-water interface and obtain most of their food within the water.
E.g., beetles and back-swimmers.
- Periphyton:
These are organisms which remain attached to stems and leaves of rooted plants or substances emerging above the bottom mud such as sessile algae and their associated group of animals.
- Plankton
This group includes both microscopic plants like algae (phytoplankton) and
animals like crustaceans and protozoans (zooplankton) found in all aquatic
ecosysteins, except certain swift moving waters
The locomotory power of the planktons is limited so that their distribution is
controlled, largely, by currents in the aquatic ecosystems.
- Nekton:
This group contains animals which are swimmers.
The nektons are relatively large and powerful as they have to overcome the water currents.
- Benthos:
The benthic organisms are those found living in the bottom of the water mass.
Practically every aquatic ecosystem contains well developed benthos
Factors Limiting the Productivity of Aquatic Habitats
- Sunlight :
Sunlight penetration rapidly diminishes as it passes down the column of water.
The depth to which light penetrates a lake determines the extent of plant distribution.
Based on light penetration and plant distribution they are classified as photic and aphotic zones
Photic zone:
It is the upper layer of the aquatic ecosystems, up to which light penetrates and within which photosynthetic activity is confined.
The depth of this zone depends on the transparency of water.
photic (or .”euphotic”) zone is the lighted and usually well-mixed portion that extends from the lake
89.4 11.4 132.3c6.3 23.7 24.8 41.5 48.3 47.8C117.2 448 288 448 288 448s170.8 0 213.4-11.5c23.5-6.3 42-24.2 48.3-47.8 11.4-42.9 11.4-132.3 11.4-132.3s0-89.4-11.4-132.3zm-317.5 213.5V175.2l142.7 81.2-142.7 81.2z"/> Subscribe on YouTube