Elementary idea of LASER

Elementary idea of LASER

Laser, a device that stimulates atoms or molecules to emit light at particular wavelengths and amplifies that light, typically producing a very narrow beam of radiation. The emission generally covers an extremely limited range of visible, infrared, or ultraviolet wavelengths. Many different types of lasers have been developed, with highly varied characteristics. Laser is an acronym for “light amplification by the stimulated emission of radiation.”

The laser is an outgrowth of a suggestion made by Albert Einstein in 1916 that under the proper circumstances atoms could release excess energy as light—either spontaneously or when stimulated by light. German physicist Rudolf Walther Ladenburg first observed stimulated emission in 1928, although at the time it seemed to have no practical use.

In 1951 Charles H. Townes, then at Columbia University in New York City, thought of a way to generate stimulated emission at microwave frequencies. At the end of 1953, he demonstrated a working device that focused “excited” (see below Energy levels and stimulated emissions) ammonia molecules in a resonant microwave cavity, where they emitted a pure microwave frequency. Townes named the device a maser, for “microwave amplification by the stimulated emission of radiation.” Aleksandr Mikhaylovich Prokhorov and Nikolay Gennadiyevich Basov of the P.N. Lebedev Physical Institute in Moscow independently described the theory of maser operation. For their work all three shared the 1964 Nobel Prize for Physics.

An intense burst of maser research followed in the mid-1950s, but masers found only a limited range of applications as low-noise microwave amplifiers and atomic clocks. In 1957 Townes proposed to his brother-in-law and former postdoctoral student at Columbia University, Arthur L. Schawlow (then at Bell Laboratories), that they try to extend maser action to the much shorter wavelengths of infrared or visible light. Townes also had discussions with a graduate student at Columbia University, Gordon Gould, who quickly developed his own laser ideas. Townes and Schawlow published their ideas for an “optical maser” in a seminal paper in the December 15, 1958, issue of Physical Review. Meanwhile, Gould coined the word laser and wrote a patent application. Whether Townes or Gould should be credited as the “inventor” of the laser thus became a matter of intense debate and led to years of litigation. Eventually, Gould received a series of four patents starting in 1977 that earned him millions of dollars in royalties.

Fundamental Principles of laser

Energy levels and stimulated emissions

Laser emission is shaped by the rules of quantum mechanics, which limit atoms and molecules to having discrete amounts of stored energy that depend on the nature of the atom or molecule. The lowest energy level for an individual atom occurs when its electrons are all in the nearest possible orbits to its nucleus (see electronic configuration). This condition is called the ground state. When one or more of an atom’s electrons have absorbed energy, they can move to outer orbits, and the atom is then referred to as being “excited.” Excited states are generally not stable; as electrons drop from higher-energy to lower-energy levels, they emit the extra energy as light.

Laser elements

Population inversions can be produced in a gas, liquid, or solid, but most laser media are gases or solids. Typically, laser gases are contained in cylindrical tubes and excited by an electric current or external light source, which is said to “pump” the laser. Similarly, solid-state lasers may use semiconductors or transparent crystals with small concentrations of light-emitting atoms.

An optical resonator is needed to build up the light energy in the beam. The resonator is formed by placing a pair of mirrors facing each other so that light emitted along the line between the mirrors is reflected back and forth. When a population inversion is created in the medium, light reflected back and forth increases in intensity with each pass through the laser medium. Other light leaks around the mirrors without being amplified. In an actual laser cavity, one or both mirrors transmit a fraction of the incident light. The fraction of light transmitted—that is, the laser beam—depends on the type of laser. If the laser generates a continuous beam, the amount of light added by stimulated emission on each round trip between the mirrors equals the light emerging in the beam plus losses within the optical resonator.

The combination of laser medium and resonant cavity forms what often is called simply a laser but technically is a laser oscillator. Oscillation determines many laser properties, and it means that the device generates light internally. Without mirrors and a resonant cavity, a laser would just be an optical amplifier, which can amplify light from an external source but not generate a beam internally. Elias Snitzer, a researcher at American Optical, demonstrated the first optical amplifier in 1961, but such devices were little used until the spread of communications based on fibre optics.

Laser Applications

Lasers deliver coherent, monochromatic, well-controlled, and precisely directed light beams. Although lasers make poor choices for general-purpose illumination, they are ideal for concentrating light in space, time, or particular wavelengths. For example, many people were first introduced to lasers by concerts in the early 1970s that incorporated laser light shows, in which moving laser beams of different colours projected changing patterns on planetarium domes, concert-hall ceilings, or outdoor clouds.

Most laser applications fall into one of a few broad categories:

  • Transmission and processing of information,
  • precise delivery of energy, and
  • alignment, measurement, and imaging. These categories cover diverse applications, from pinpoint energy delivery for delicate surgery to heavy-duty welding and from the mundane alignment of suspended ceilings to laboratory measurements of atomic properties.

 

 

UKPCS Notes brings Prelims and Mains programs for UKPCS Prelims and UKPCS Mains Exam preparation. Various Programs initiated by UKPCS Notes are as follows:- For any doubt, Just leave us a Chat or Fill us a querry––

Leave a Comment